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Abstract— This work presents an orderly path for the 
description and simplification of finite state automata (FSA) 
representation of embedded systems. This approach takes into 
account some typical features of this kind of systems, i.e. in a 
given state of a FSA, usually only a few among a large set of 
system inputs are taken into account. In addition to this, the 
system presents identical reaction to many inputs in several 
states.  These and other considerations allow the proposal of a 
modeling strategy that belongs to the “divide and conquer” 
paradigm. 
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I.  INTRODUCTION 
In this work, we present some methodological proposals 

concerning the adoption of an orderly description of finite state 
machines (FSM) as a formal modeling language for embedded 
applications. FSM are well suited for modeling and designing 
embedded applications and are valuable in both hardware and 
software implementations [1] [2] [3]. Nevertheless, as the 
complexity of applications grows, classical FSM approach 
suffers from a lack of hierarchical structure, which produces a 
combinatorial explosion of the number of states and transitions. 

The better a system is described, the more likely it is that a 
good implementation will emerge [4] [5]. A good FSM 
description should express with precision the required level of 
detail to understand the intended system behavior. It is 
common practice to begin with a global description of the 
system behavior and then to add details during a refinement 
process consisting in the addition of states and transitions. 
Hence, the initially ordered automaton becomes more and more 
complex, as well as less and less readable and maintainable. 
Furthermore, this procedure is error-prone, as all the 
consequences of adding new inputs and/or states are frequently 
not fully taken into account. Therefore a methodical approach 
to overcome this limitation becomes mandatory during the 
modeling and design stages. 

An approach to overcome the above-described drawback 
consists in the application of Statecharts [6], which requires 
specific professional working environments or toolboxes such 
as https://www.itemis.com/en/yakindu/statechart-tools/. On the 
other hand, as proposed in this work, it is possible apply 
practical rules such as representing many states and transitions 
as a single activity, combined with a mechanism to filter and/or 
aggregate input signals.  

The diversity of modeled systems makes it difficult to 
define methods based on a systematic application of a 
reasonable number of rules. Rather than a rigid prescription of 
steps and rules, in this work we propose to adopt a flexible 
approach based on the identification of some features that 
could characterize many systems to be modeled: (1) often only 
a few among a set of numerous inputs are taken into account at 
a given system state and (2) multiple different combinations of 
inputs usually trigger the same reaction. We also consider the 
distinction between bounded stay states (bounded states for 
short), in which the automaton remains only for a limited lapse 
of time, usually controlled by a timer, and unbounded stay 
states (unbounded states for short), where the system stays 
most of the time waiting for inputs to occur. Usually these 
unbounded states implement the main functional operations of 
the system and they can be preempted, generally by user-
triggered activities such as reconfiguration.  

This work proposes a modeling approach that belongs to 
the divide and conquer paradigm and is based in the following 
set of assumptions: 

• A given system may assume a high number of states. 
Many of them are bounded states and therefore the 
system spends a very low proportion of its execution 
time on them. On the other hand, unbounded states 
usually represent the system’s behavior in normal 
conditions that include most of the user’s functional 
specifications, e.g. an alarm system that is in a disarmed 
state. It is important to incorporate description tools 
adapted to each one of the situations mentioned above.  

• The number of system inputs may be high but most of 
the states are sensitive only to a reduced subset of input 
signals. As an example, consider an FSM that controls 
an elevator: if a state represents a floor, next state 
depends only in neighboring floor sensors, and only 
these inputs are relevant for transitions to a new state.  

• Usually, there exist many different inputs to which the 
system produces the same output from many of its 
internal states. As an example let us consider a system 
where the input of any critical sensor has to trigger an 
alarm, no matter in which state the system is.  

It would be desirable to be able to take advantage of the 
characteristics of the assumptions described above.  



To illustrate how these features could be exploited to build 
a simpler FSA model of reactive systems, the case study of a 
home alarm system will be briefly described. 

II. CASE STUDY: A HOME ALARM SYSTEM 

A. General Description 
In a high level of abstraction, the behavior of a home alarm 

system may be described by a FSM with only three states:  
INACTIVE, DISARMED and ARMED.  

B. Refining the Model 
The ARMED state can be refined by adding new states that 

describe different armed behaviors. 

• ARMED PRESENT: allows the presence of people 
inside the house, some sensors are inactive but not all. 

• ARMED ABSENT: all sensors are active.  

• ARMED PRESENT FORCED: similar to “armed 
present” but faulty sensors are deactivated. 

• ARMED ABSENT FORCED: similar to “armed absent” 
but faulty sensors are deactivated. 

• ARMED TEMPORARY: intermediate state that allows 
the transition between PRESENT and ABSENT states. 
Some sensors are activated after a predefined time 
interval so that the user may leave the house. 

Likewise, the DISARMED state needs to be refined by 
adding a new state DISARMED TEMPORARY: some sensors 
are temporarily disarmed to allow entering the premises. 

It should be considered that to perform a transition from an 
ARMED state to a DISARMED state, a password consisting of 
five numerical keys followed by a special “Enter” key has to be 
typed. Thus, a refined state diagram would have to add six 
intermediate states. It becomes clear that successive refinement 
operations would lead to a rapid growth of the number of states 
and transitions, resulting in an unreadable state diagram.  

In many cases, similar to the one described above, the 
system behavior has to include particular sequences of 
intermediate states. Each of these sequences will be called an 
“activity”. This kind of activity may induce purely sequential 
thinking, which is error-prone. A common error of sequential 
thinking results from not taking into account other possible 
parallel events that could disrupt the main sequence (e.g. 
entering a password). In this case the first digit of the password 
would lock the system in waiting only for the following 
numerical keys. Taking into account all possible pre-empting 
events results in even a more complex state diagram. The 
following sections introduce the definitions and tools necessary 
to simplify the FSA that represents a given system.   

III. SIMPLIFYING TOOLS 

A. Initial Definitions 
1) Reaction: 

Let a system be in state Si, a reaction to a system 
combination of inputs may consist on at least one of the 
following actions: (1) there is a transition from Si to Sj and (2) 
there are new outputs from the system. 

2) Stimuli: 
A stimulus is a combination of input signal values that 

causes a system reaction at a given state of the system, i.e. 
there is at least one system state Si such that if Si is active and 
the stimulus takes place, there will be a reaction. It is important 
to note that, depending on the state assumed by the system, the 
same combination of inputs might not get any reaction. 
Likewise, the same stimulus may cause different reactions in 
different states of the system. 

3) Activities: 
Let the system be in an initial state Si, an activity is defined 

as the complete sequence of stimuli, reactions and bounded 
states that allows the system to transition to a new state Sj.  

We note that usually Si and Sj are unbounded states, 
although this is not a necessary condition. On the other hand, 
states that belong to an activity have to be bounded states.   

As an example, consider the activity that takes place in the 
system described in the case-study to transition from an 
ARMED state to a DISARMED one: the user has to input a five 
number password and an “enter” key in order to disarm the 
system.  The user has a limited amount of time to perform this 
operation; otherwise a time-out will abort it.  

According to the number of stimuli, it could be useful to 
classify activities into: 

• Atomic activities triggered by a single stimulus. Other 
stimuli cannot interfere in any way. As an example, let 
us consider the case study again. Suppose there is one 
key “ARM”: pressing it generates an atomic activity 
that brings the system to the ARMED state.  These 
activities are fast when compared to the time elapsed 
between any two stimuli. 

• Non-atomic activities composed by a succession of 
stimuli and their corresponding reactions. This kind of 
activities could be exclusive or not. Exclusive activities 
should be considered as atomic activities, since no 
interference is possible. On the other hand, non-
exclusive activities could be pre-empted by one or more 
activities before they get to the final state of the 
sequence. As an example, consider the case study 
previously described: if a user types a five-digit 
password to disarm the system and a sensor is activated 
in parallel, the alarm should go off and the input activity 
aborted.  

We point out a functional difference between atomic 
activities and exclusive non-atomic activities: an activity 
composed by only one stimulus is atomic “per se” whereas a 
non-atomic activity has to be defined as exclusive or not by the 
designer, in response to system requirements and 
specifications.   



B. Sequences of bounded states viewed as activities 
Consider the case of a system transition between two states, 

S0 and Sn, which goes through n-1 bounded states, as illustrated 
by Fig 1. 

S0 S1 ... Si ... Sn

�0/↵0 �1/↵1 �i�1/↵i�1 �i/↵i �n�1/↵n�1

 
 

Fig. 1. A sequence of bounded states. 

The sequence is triggered by stimulus σ0 and the system 
transitions through states S1; S2; …; Sn-1 up to state Sn  
producing a sequence of actions α0; α1; …; αn-1 in response to 
particular stimuli σo; …; σn-1 . In the simplest case, when this 
sequence is atomic, i.e. it cannot be interrupted by any other 
stimulus, it can be defined as an activity and the state diagram 
can be simplified as in Fig. 2, by using the statechart style of 
description [4]. Strictly speaking the activity includes 
transitions σo/α0, σn-1/ αn-1 and super state A.  

S0
A

Sn�0/↵0 �1/↵1

 
Fig. 2. An atomic activity represented in a statechart.  

In many cases the activity is required to be non-atomic. The 
sequence from state Si to state Sk may be preempted by 
stimulus σp. This can be modeled by super state Sp (a statechart 
OR state). The statechart language offers the possibility to 
restore the state that was active at occurrence of the preempting 
stimulus, by using a history connector, as illustrated by Fig. 3. 

S0

Sp

H

Sn

Sm

�0/↵0 �n�1/↵n�1

�p/↵p
�m/↵m

 
Fig. 3. Preemting stimulus in the statechart diagram.  

A simpler approach is shown in Fig. 4: a thick arrow, called 
activity “A”, replaces the sequence of Fig. 1. Stimulus σp may 
be considered as a starting stimulus of a different activity; the 
problems of interaction among activities are left to a 
subsequent and separate step of the divide and conquer 
technique.  Thus, it will not interfere with the simplicity of the 
high level description being introduced. 

S0 Sn

A

 

Fig. 4. Activity A hides the complexity of interaction among activities 

A tool to analyze interactions among activities consists of 
an interaction table that will be presented in a follow-up article. 
Statecharts may be also used in this new step to further refine 
the description of activities interaction. 

C. Differential perception of stimuli 
Activities are reactions of the system to one or more stimuli 

and result in output signals (external reaction) and/or changes 
of state (internal reaction). Different states may allow different 
system reactions to the same stimulus. 

1) Stimuli perception: when the system transitions from 
state Si to state Sj, the set of awaited stimuli changes. Some 
stimuli in Si do not affect Sj , hence they are not stimuli of Sj. 
It is said that in Sj the system has no “perception” of some 
stimuli that affect Si.  

2) External reaction to stimuli: the system outputs due to 
the same stimulus may be different depending on the system 
state. 

3) Internal reaction to stimuli: from a state, Si, the system 
may transition to different states depending on the next 
stimulus occurrence. 

D. Unifying states 
Let a subset of states S of a system be such that: (1) 

identical perceived stimulus generates the same external 
reaction on every state of S, and (2) any transition caused by 
identical stimulus to different states of S may bring the system 
to any state belonging to S or to a unique state Q out of S. 
Then S can be unified in a single state U, yielding a simplified 
state set. Note that states in S may not react to the same 
stimulus but if they do, the external reaction must be equal for 
each one of them. Different states may only transition to the 
same state out of S under identical stimulus.  

In order to show that the previous statement is true, it 
suffices to take into account that transitions among states may 
be produced only in the following cases:  

1) Self-loops on U that change the perception of stimuli, 
are equivalent to transitions between states belonging to S. 

2) Outgoing transitions from states in S to states not in S, 
caused by the same stimulus, lead to a unique state Q with the 
same external reaction by definition. Therefore they can be 
replaced by a single transition from U to Q. 

3) Transitions, caused by the same stimulous, entering to 
any state of S from a state W not in S, can be replaced by a 
unique transition from W to U, since subsequent reactions will 
be identical following the two previous points. 

Therefore, stimuli that cause the same reaction from any 
state in S will give the same reaction from state U and the 
behavior of the system is not modified.  

We remark that our approach to simplifying FSMs differ 
from those related to non-completely specified automata 
models [7]: modifying system perception ensures that any input 



stimuli not specified for state Si will never be present when this 
state is active. 

Although minimization algorithms [8] are based on the 
formal definition of state equivalence relations, the 
simplification showed above is not: states in S may be unified 
in U even if they do not react to the same input sequence. 
Furthermore, one state Si in S may react to a given stimulus 
whereas other State Sj in S may not “perceive” it.  

It follows that the simpler equivalent state diagram contains 
not only states and activities, but also different perceptions of 
stimuli.  

E. Modifying System Perception 
To implement the modification of the system perception as 

a consequence of transitions in the state diagram, a simple 
stimuli-masking operation is carried out. Each activity leading 
to a new state of the system must perform this operation when 
necessary.  

Consider, as an example, the case of up to 64 binary 
stimuli, ordered as a 8x8 matrix Σ. Each position (i, j) 
represents a stimulus. Σi,j = 1 means that stimulus (i, j) is 
present, whereas Σi,,j = 0 means it is not. Let the matrix PMk be 
the perception mask of activity k such that PMk

i,j = 0 if stimulus 
(i ,j) is masked out for activity k and PMk

i,,j = 1 if if it is not. 
The perceived stimuli matrix for activity k, PSk, is given by: 

                                    PSk = Σ ∧ PMk                              (1)  

The input/output subsystem updates matrices Σ and PSk [9]. 
The last executed activity updates matrix PM. Perception 
matrices may be constant and fixed beforehand for each 
activity or they may vary, depending on the particular system 
that is being modeled. 

IV. EXAMPLE: CASE STUDY REVISITED 
To illustrate the case of a state diagram simplified by means 

of activities, consider the alarm system introduced in section 2. 
Fig. 5 shows a high level state diagram that we will describe 
now. 

Initially, all sensors are disabled and the system may react 
only to input keys, as the only allowed activity consists in 
decoding a special password. The present state is INACTIVE. 

Once the special password is entered, the perception of 
permanent sensors (fire and anti-tampering) is enabled. A 
stimulus coming from any perceived sensor would trigger the 
alarm. The system stays in state DISARMED. 

The arm-present activity adds the perception of external 
sensors, allowing for the movement of people inside the house. 
Perceived stimuli would trigger the alarm. The system gets to 
ARMED PRESENT state. 

The reader may easily check that the ARMED PRESENT 
FORCED state is similar to the ARMED PRESENT state, 
except that the transition activity does not enable the perception 
of sensors, which, due to malfunctioning or other reasons, 
remain active. A similar case occurs with other ways to arm the 
system, i.e the ARMED ABSENT state. 

Every different way of arming the system would require a 
new different armed state (i.e. ARMED PRESENT, ARMED 
ABSENT, …). The fact that each arming activity modifies the 
system perception allows unifying them in a unique state 
ARMED, as shown in Fig. 5.  Since not all of the systems 
arming activities are represented in Fig 5 for simplicity’s sake, 
every activity and the way it affects perceptions of the system 
is presented in Table I.  

The system admits two different passwords: one to 
transition between INACTIVE and DISARMED states, and 
another one for switching between DISARMED and ARMED 
states. To define which of the many arming activities will take 
place, the user has to type a function key before the password. 

In order to disarm the system, the user needs to get into the 
house through a path of delayed-sensors and enter a password. 
The first activation of a delayed-sensor will enable a time-out 
action (TIMER2) that consists of masking out the whole set of 
these sensors for a short time. If TIMER2 expires before typing 
the right password, the system stays in the ARMED state and 
the alarm is triggered. 

 

Inactive Disarmed Armed

Special password /

Enable permanent sensors

Permanent sensor activation /

Trigger alarm

Password /

Enable non delayed sensors &

Start delayed output timer

Expiration delayed output timer /

Enable delayed sensors

Non delayed

sensor activation /

Trigger alarm

Delayed sensor activation /

Start delayed input timer

& Disable delayed sensors

Expiration delayed input timer /

Trigger alarm

Password /

Disable non permanent sensors

Special password /

Disable permanent sensors

 

Fig. 5. High-level state diagram of the alarm system. 



TABLE I.   

Activity 
Perception Changes 

Initial 
State 

Final 
State Effect on Perception 

Special password 

1 2 Enable permanent sensors 

2 1 Disable all sensors 

Password 
2 3 Enable non delayed sensors 

3 2 Disable non permanent sensors 
Expiration delayed 
output timer 3 3 Enable delayed sensors 

Delayed Sensor 
Activation 3 3 Disable delayed sensors  

a. Effect of Activities into the system perception 

A future version of the system may require arming a 
particular zone Z of the house whereas the rest remain 
unarmed. It is straightforward to define a new perception 
matrix that would allow only permanent sensors and Z sensors 
to be active. A new activity ARM ZONE would add this new 
perception matrix when bringing the system to the ARMED 
state. This example shows that the simplifying tools provide an 
important contribution to the maintainability of the system.  

V. CONCLUSION 
Activities are the main tool to build a simpler state 

representation of FSMs mainly due to the following reasons: 
(1) they change the perception of a system, thus allowing many 
equivalent states to be unified, (2) they contain bounded states, 
providing a way to further reduce the number of states, and (3) 
they provide an upper level of abstraction. Activities 
interactions do not need to be considered. This can be left for a 
following step. Statecharts and many tools from real time 
systems [10] may be used at this stage. 

The example revisited in section IV shows that the tools 
introduced in this article contribute to better system 
maintainability. We believe that there are many systems for 
which these tools could bring the same advantage.  

Complexity and memory requirements of this simple 
representation are transferred to activities and perception 
masks. This new approach may be considered as a way to 

apply the divide and conquer strategy, yielding a simpler 
higher-level hierarchical representation.  

The activities approach allows the definition of software 
threads for their implementation in a programmed logic 
environment, such as a microcontroller, for an embedded 
system.  

Bounded states, belonging to activities, usually differ in 
functionality from unbounded ones. The former are often 
related to exceptional cases, usually not present in the early 
phases of user specification. They may represent unusual and 
complex conditions, which could affect important features of 
the system such as security, reliability and disponibility. Since 
activities may be carried out as software threads, their design 
can be carried out with well-known programming languages 
(C, for instance).  
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