
Modeling Embedded Applications: An Orderly
Simplification of Finite State Automata Description

Eduardo Daniel Cohen, Esteban Volentini and Pablo Gruer
Laboratorio de Microprocesadores, FACET

Universidad Nacional de Tucumán
S. M. de Tucumán, Argentina

dcohen@herrera.unt.edu.ar, evolentini@equiser.com.ar, jpgruer@gmail.com

Abstract— This work presents an orderly path for the
description and simplification of finite state automata (FSA)
representation of embedded systems. This approach takes into
account some typical features of this kind of systems, i.e. in a
given state of a FSA, usually only a few among a large set of
system inputs are taken into account. In addition to this, the
system presents identical reaction to many inputs in several
states. These and other considerations allow the proposal of a
modeling strategy that belongs to the “divide and conquer”
paradigm.

Keywords—embedded systems; finite state automata; modeling
methods.

I. INTRODUCTION
In this work, we present some methodological proposals

concerning the adoption of an orderly description of finite state
machines (FSM) as a formal modeling language for embedded
applications. FSM are well suited for modeling and designing
embedded applications and are valuable in both hardware and
software implementations [1] [2] [3]. Nevertheless, as the
complexity of applications grows, classical FSM approach
suffers from a lack of hierarchical structure, which produces a
combinatorial explosion of the number of states and transitions.

The better a system is described, the more likely it is that a
good implementation will emerge [4] [5]. A good FSM
description should express with precision the required level of
detail to understand the intended system behavior. It is
common practice to begin with a global description of the
system behavior and then to add details during a refinement
process consisting in the addition of states and transitions.
Hence, the initially ordered automaton becomes more and more
complex, as well as less and less readable and maintainable.
Furthermore, this procedure is error-prone, as all the
consequences of adding new inputs and/or states are frequently
not fully taken into account. Therefore a methodical approach
to overcome this limitation becomes mandatory during the
modeling and design stages.

An approach to overcome the above-described drawback
consists in the application of Statecharts [6], which requires
specific professional working environments or toolboxes such
as https://www.itemis.com/en/yakindu/statechart-tools/. On the
other hand, as proposed in this work, it is possible apply
practical rules such as representing many states and transitions
as a single activity, combined with a mechanism to filter and/or
aggregate input signals.

The diversity of modeled systems makes it difficult to
define methods based on a systematic application of a
reasonable number of rules. Rather than a rigid prescription of
steps and rules, in this work we propose to adopt a flexible
approach based on the identification of some features that
could characterize many systems to be modeled: (1) often only
a few among a set of numerous inputs are taken into account at
a given system state and (2) multiple different combinations of
inputs usually trigger the same reaction. We also consider the
distinction between bounded stay states (bounded states for
short), in which the automaton remains only for a limited lapse
of time, usually controlled by a timer, and unbounded stay
states (unbounded states for short), where the system stays
most of the time waiting for inputs to occur. Usually these
unbounded states implement the main functional operations of
the system and they can be preempted, generally by user-
triggered activities such as reconfiguration.

This work proposes a modeling approach that belongs to
the divide and conquer paradigm and is based in the following
set of assumptions:

• A given system may assume a high number of states.
Many of them are bounded states and therefore the
system spends a very low proportion of its execution
time on them. On the other hand, unbounded states
usually represent the system’s behavior in normal
conditions that include most of the user’s functional
specifications, e.g. an alarm system that is in a disarmed
state. It is important to incorporate description tools
adapted to each one of the situations mentioned above.

• The number of system inputs may be high but most of
the states are sensitive only to a reduced subset of input
signals. As an example, consider an FSM that controls
an elevator: if a state represents a floor, next state
depends only in neighboring floor sensors, and only
these inputs are relevant for transitions to a new state.

• Usually, there exist many different inputs to which the
system produces the same output from many of its
internal states. As an example let us consider a system
where the input of any critical sensor has to trigger an
alarm, no matter in which state the system is.

It would be desirable to be able to take advantage of the
characteristics of the assumptions described above.

To illustrate how these features could be exploited to build
a simpler FSA model of reactive systems, the case study of a
home alarm system will be briefly described.

II. CASE STUDY: A HOME ALARM SYSTEM

A. General Description
In a high level of abstraction, the behavior of a home alarm

system may be described by a FSM with only three states:
INACTIVE, DISARMED and ARMED.

B. Refining the Model
The ARMED state can be refined by adding new states that

describe different armed behaviors.

• ARMED PRESENT: allows the presence of people
inside the house, some sensors are inactive but not all.

• ARMED ABSENT: all sensors are active.

• ARMED PRESENT FORCED: similar to “armed
present” but faulty sensors are deactivated.

• ARMED ABSENT FORCED: similar to “armed absent”
but faulty sensors are deactivated.

• ARMED TEMPORARY: intermediate state that allows
the transition between PRESENT and ABSENT states.
Some sensors are activated after a predefined time
interval so that the user may leave the house.

Likewise, the DISARMED state needs to be refined by
adding a new state DISARMED TEMPORARY: some sensors
are temporarily disarmed to allow entering the premises.

It should be considered that to perform a transition from an
ARMED state to a DISARMED state, a password consisting of
five numerical keys followed by a special “Enter” key has to be
typed. Thus, a refined state diagram would have to add six
intermediate states. It becomes clear that successive refinement
operations would lead to a rapid growth of the number of states
and transitions, resulting in an unreadable state diagram.

In many cases, similar to the one described above, the
system behavior has to include particular sequences of
intermediate states. Each of these sequences will be called an
“activity”. This kind of activity may induce purely sequential
thinking, which is error-prone. A common error of sequential
thinking results from not taking into account other possible
parallel events that could disrupt the main sequence (e.g.
entering a password). In this case the first digit of the password
would lock the system in waiting only for the following
numerical keys. Taking into account all possible pre-empting
events results in even a more complex state diagram. The
following sections introduce the definitions and tools necessary
to simplify the FSA that represents a given system.

III. SIMPLIFYING TOOLS

A. Initial Definitions
1) Reaction:

Let a system be in state Si, a reaction to a system
combination of inputs may consist on at least one of the
following actions: (1) there is a transition from Si to Sj and (2)
there are new outputs from the system.

2) Stimuli:
A stimulus is a combination of input signal values that

causes a system reaction at a given state of the system, i.e.
there is at least one system state Si such that if Si is active and
the stimulus takes place, there will be a reaction. It is important
to note that, depending on the state assumed by the system, the
same combination of inputs might not get any reaction.
Likewise, the same stimulus may cause different reactions in
different states of the system.

3) Activities:
Let the system be in an initial state Si, an activity is defined

as the complete sequence of stimuli, reactions and bounded
states that allows the system to transition to a new state Sj.

We note that usually Si and Sj are unbounded states,
although this is not a necessary condition. On the other hand,
states that belong to an activity have to be bounded states.

As an example, consider the activity that takes place in the
system described in the case-study to transition from an
ARMED state to a DISARMED one: the user has to input a five
number password and an “enter” key in order to disarm the
system. The user has a limited amount of time to perform this
operation; otherwise a time-out will abort it.

According to the number of stimuli, it could be useful to
classify activities into:

• Atomic activities triggered by a single stimulus. Other
stimuli cannot interfere in any way. As an example, let
us consider the case study again. Suppose there is one
key “ARM”: pressing it generates an atomic activity
that brings the system to the ARMED state. These
activities are fast when compared to the time elapsed
between any two stimuli.

• Non-atomic activities composed by a succession of
stimuli and their corresponding reactions. This kind of
activities could be exclusive or not. Exclusive activities
should be considered as atomic activities, since no
interference is possible. On the other hand, non-
exclusive activities could be pre-empted by one or more
activities before they get to the final state of the
sequence. As an example, consider the case study
previously described: if a user types a five-digit
password to disarm the system and a sensor is activated
in parallel, the alarm should go off and the input activity
aborted.

We point out a functional difference between atomic
activities and exclusive non-atomic activities: an activity
composed by only one stimulus is atomic “per se” whereas a
non-atomic activity has to be defined as exclusive or not by the
designer, in response to system requirements and
specifications.

B. Sequences of bounded states viewed as activities
Consider the case of a system transition between two states,

S0 and Sn, which goes through n-1 bounded states, as illustrated
by Fig 1.

S0 S1 ... Si ... Sn

�0/↵0 �1/↵1 �i�1/↵i�1 �i/↵i �n�1/↵n�1

Fig. 1. A sequence of bounded states.

The sequence is triggered by stimulus σ0 and the system
transitions through states S1; S2; …; Sn-1 up to state Sn
producing a sequence of actions α0; α1; …; αn-1 in response to
particular stimuli σo; …; σn-1 . In the simplest case, when this
sequence is atomic, i.e. it cannot be interrupted by any other
stimulus, it can be defined as an activity and the state diagram
can be simplified as in Fig. 2, by using the statechart style of
description [4]. Strictly speaking the activity includes
transitions σo/α0, σn-1/ αn-1 and super state A.

S0
A

Sn�0/↵0 �1/↵1

Fig. 2. An atomic activity represented in a statechart.

In many cases the activity is required to be non-atomic. The
sequence from state Si to state Sk may be preempted by
stimulus σp. This can be modeled by super state Sp (a statechart
OR state). The statechart language offers the possibility to
restore the state that was active at occurrence of the preempting
stimulus, by using a history connector, as illustrated by Fig. 3.

S0

Sp

H

Sn

Sm

�0/↵0 �n�1/↵n�1

�p/↵p
�m/↵m

Fig. 3. Preemting stimulus in the statechart diagram.

A simpler approach is shown in Fig. 4: a thick arrow, called
activity “A”, replaces the sequence of Fig. 1. Stimulus σp may
be considered as a starting stimulus of a different activity; the
problems of interaction among activities are left to a
subsequent and separate step of the divide and conquer
technique. Thus, it will not interfere with the simplicity of the
high level description being introduced.

S0 Sn

A

Fig. 4. Activity A hides the complexity of interaction among activities

A tool to analyze interactions among activities consists of
an interaction table that will be presented in a follow-up article.
Statecharts may be also used in this new step to further refine
the description of activities interaction.

C. Differential perception of stimuli
Activities are reactions of the system to one or more stimuli

and result in output signals (external reaction) and/or changes
of state (internal reaction). Different states may allow different
system reactions to the same stimulus.

1) Stimuli perception: when the system transitions from
state Si to state Sj, the set of awaited stimuli changes. Some
stimuli in Si do not affect Sj , hence they are not stimuli of Sj.
It is said that in Sj the system has no “perception” of some
stimuli that affect Si.

2) External reaction to stimuli: the system outputs due to
the same stimulus may be different depending on the system
state.

3) Internal reaction to stimuli: from a state, Si, the system
may transition to different states depending on the next
stimulus occurrence.

D. Unifying states
Let a subset of states S of a system be such that: (1)

identical perceived stimulus generates the same external
reaction on every state of S, and (2) any transition caused by
identical stimulus to different states of S may bring the system
to any state belonging to S or to a unique state Q out of S.
Then S can be unified in a single state U, yielding a simplified
state set. Note that states in S may not react to the same
stimulus but if they do, the external reaction must be equal for
each one of them. Different states may only transition to the
same state out of S under identical stimulus.

In order to show that the previous statement is true, it
suffices to take into account that transitions among states may
be produced only in the following cases:

1) Self-loops on U that change the perception of stimuli,
are equivalent to transitions between states belonging to S.

2) Outgoing transitions from states in S to states not in S,
caused by the same stimulus, lead to a unique state Q with the
same external reaction by definition. Therefore they can be
replaced by a single transition from U to Q.

3) Transitions, caused by the same stimulous, entering to
any state of S from a state W not in S, can be replaced by a
unique transition from W to U, since subsequent reactions will
be identical following the two previous points.

Therefore, stimuli that cause the same reaction from any
state in S will give the same reaction from state U and the
behavior of the system is not modified.

We remark that our approach to simplifying FSMs differ
from those related to non-completely specified automata
models [7]: modifying system perception ensures that any input

stimuli not specified for state Si will never be present when this
state is active.

Although minimization algorithms [8] are based on the
formal definition of state equivalence relations, the
simplification showed above is not: states in S may be unified
in U even if they do not react to the same input sequence.
Furthermore, one state Si in S may react to a given stimulus
whereas other State Sj in S may not “perceive” it.

It follows that the simpler equivalent state diagram contains
not only states and activities, but also different perceptions of
stimuli.

E. Modifying System Perception
To implement the modification of the system perception as

a consequence of transitions in the state diagram, a simple
stimuli-masking operation is carried out. Each activity leading
to a new state of the system must perform this operation when
necessary.

Consider, as an example, the case of up to 64 binary
stimuli, ordered as a 8x8 matrix Σ. Each position (i, j)
represents a stimulus. Σi,j = 1 means that stimulus (i, j) is
present, whereas Σi,,j = 0 means it is not. Let the matrix PMk be
the perception mask of activity k such that PMk

i,j = 0 if stimulus
(i ,j) is masked out for activity k and PMk

i,,j = 1 if if it is not.
The perceived stimuli matrix for activity k, PSk, is given by:

 PSk = Σ ∧ PMk (1)

The input/output subsystem updates matrices Σ and PSk [9].
The last executed activity updates matrix PM. Perception
matrices may be constant and fixed beforehand for each
activity or they may vary, depending on the particular system
that is being modeled.

IV. EXAMPLE: CASE STUDY REVISITED
To illustrate the case of a state diagram simplified by means

of activities, consider the alarm system introduced in section 2.
Fig. 5 shows a high level state diagram that we will describe
now.

Initially, all sensors are disabled and the system may react
only to input keys, as the only allowed activity consists in
decoding a special password. The present state is INACTIVE.

Once the special password is entered, the perception of
permanent sensors (fire and anti-tampering) is enabled. A
stimulus coming from any perceived sensor would trigger the
alarm. The system stays in state DISARMED.

The arm-present activity adds the perception of external
sensors, allowing for the movement of people inside the house.
Perceived stimuli would trigger the alarm. The system gets to
ARMED PRESENT state.

The reader may easily check that the ARMED PRESENT
FORCED state is similar to the ARMED PRESENT state,
except that the transition activity does not enable the perception
of sensors, which, due to malfunctioning or other reasons,
remain active. A similar case occurs with other ways to arm the
system, i.e the ARMED ABSENT state.

Every different way of arming the system would require a
new different armed state (i.e. ARMED PRESENT, ARMED
ABSENT, …). The fact that each arming activity modifies the
system perception allows unifying them in a unique state
ARMED, as shown in Fig. 5. Since not all of the systems
arming activities are represented in Fig 5 for simplicity’s sake,
every activity and the way it affects perceptions of the system
is presented in Table I.

The system admits two different passwords: one to
transition between INACTIVE and DISARMED states, and
another one for switching between DISARMED and ARMED
states. To define which of the many arming activities will take
place, the user has to type a function key before the password.

In order to disarm the system, the user needs to get into the
house through a path of delayed-sensors and enter a password.
The first activation of a delayed-sensor will enable a time-out
action (TIMER2) that consists of masking out the whole set of
these sensors for a short time. If TIMER2 expires before typing
the right password, the system stays in the ARMED state and
the alarm is triggered.

Inactive Disarmed Armed

Special password /

Enable permanent sensors

Permanent sensor activation /

Trigger alarm

Password /

Enable non delayed sensors &

Start delayed output timer

Expiration delayed output timer /

Enable delayed sensors

Non delayed

sensor activation /

Trigger alarm

Delayed sensor activation /

Start delayed input timer

& Disable delayed sensors

Expiration delayed input timer /

Trigger alarm

Password /

Disable non permanent sensors

Special password /

Disable permanent sensors

Fig. 5. High-level state diagram of the alarm system.

TABLE I.

Activity
Perception Changes

Initial
State

Final
State Effect on Perception

Special password

1 2 Enable permanent sensors

2 1 Disable all sensors

Password
2 3 Enable non delayed sensors

3 2 Disable non permanent sensors
Expiration delayed
output timer 3 3 Enable delayed sensors

Delayed Sensor
Activation 3 3 Disable delayed sensors

a. Effect of Activities into the system perception

A future version of the system may require arming a
particular zone Z of the house whereas the rest remain
unarmed. It is straightforward to define a new perception
matrix that would allow only permanent sensors and Z sensors
to be active. A new activity ARM ZONE would add this new
perception matrix when bringing the system to the ARMED
state. This example shows that the simplifying tools provide an
important contribution to the maintainability of the system.

V. CONCLUSION
Activities are the main tool to build a simpler state

representation of FSMs mainly due to the following reasons:
(1) they change the perception of a system, thus allowing many
equivalent states to be unified, (2) they contain bounded states,
providing a way to further reduce the number of states, and (3)
they provide an upper level of abstraction. Activities
interactions do not need to be considered. This can be left for a
following step. Statecharts and many tools from real time
systems [10] may be used at this stage.

The example revisited in section IV shows that the tools
introduced in this article contribute to better system
maintainability. We believe that there are many systems for
which these tools could bring the same advantage.

Complexity and memory requirements of this simple
representation are transferred to activities and perception
masks. This new approach may be considered as a way to

apply the divide and conquer strategy, yielding a simpler
higher-level hierarchical representation.

The activities approach allows the definition of software
threads for their implementation in a programmed logic
environment, such as a microcontroller, for an embedded
system.

Bounded states, belonging to activities, usually differ in
functionality from unbounded ones. The former are often
related to exceptional cases, usually not present in the early
phases of user specification. They may represent unusual and
complex conditions, which could affect important features of
the system such as security, reliability and disponibility. Since
activities may be carried out as software threads, their design
can be carried out with well-known programming languages
(C, for instance).

REFERENCES
[1] F. Balarin et al., Hardware-Software Co-Design of Embedded Systems:

The Polis Approach, Kluwer Academic Publishers, ISBN 0-7923-9936-
6, 1997.

[2] Valvano J, Real-Time Interfacing to Arm® Cortex(TM)-M
Microcontrollers, 5th Edition, Createspace, SC, USA, 2015.

[3] White E., Making Embedded Systems, 2nd Edition, CA, USA, 2012.
[4] Maier M. & Rechtin E., The Art of System Architecting, 2nd edition,

CRC Press, Inc. Boca Raton, FL, USA, 2000.
[5] Keating, M., The Simple Art of SoC Design, Springer Science+Business

Media, New York, USA, 2011.
[6] Harel D., "Statecharts: a visual formalism for complex systems", Journal

Science of Computer Programming, Vol. 8, Issue 3, Elsevier,
Philadelphia, USA, 1987, pp. 231-274.

[7] Higuchi H. and Matsunaga Y., “A fast state reduction algorithm for
incompletely specified fihnite state machines”, Proc. Design Automation
Conference, ACM Press, New York, USA 1996. pp. 463-466.

[8] Hopcroft, J. E., “An n log n algorithm for minimizing the states in a
finite automaton” in Z. Kohavi, editor, The Theory of Machines and
Computations, pp. 189–196. Academic Press, New York, USA, 1971.

[9] Cohen, E. D., Volentini, E. & Giori, M., “Múltiples Entradas y Salidas
en Sistemas Embebidos”, Memoria – Investigaciones en Ingeniería, Nº
13, Montevideo, Uruguay, 2015, pp. 49-62.

[10] Laplante, P. A. & Ovaska, S. J., Real-Time Systems Design and
Analysis, 4th edition, IEEE Press, John Willey & Sons, New Jersey,
USA,2012.

